1,632 research outputs found

    Lightest sterile neutrino abundance within the nuMSM

    Get PDF
    We determine the abundance of the lightest (dark matter) sterile neutrinos created in the Early Universe due to active-sterile neutrino transitions from the thermal plasma. Our starting point is the field-theoretic formula for the sterile neutrino production rate, derived in our previous work [JHEP 06(2006)053], which allows to systematically incorporate all relevant effects, and also to analyse various hadronic uncertainties. Our numerical results differ moderately from previous computations in the literature, and lead to an absolute upper bound on the mixing angles of the dark matter sterile neutrino. Comparing this bound with existing astrophysical X-ray constraints, we find that the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound may conflict with a lower bound from structure formation, but a definitive conclusion necessitates numerical simulations with the non-equilibrium momentum distribution function that we derive. If other production mechanisms are also operative, no upper bound on the sterile neutrino mass can be established.Comment: 34 pages. v2: clarifications and a reference added; published version. v3: erratum appende

    Historical changes in the phenology of British Odonata are related to climate

    Get PDF
    Responses of biota to climate change take a number of forms including distributional shifts, behavioural changes and life history changes. This study examined an extensive set of biological records to investigate changes in the timing of life history transitions (specifically emergence) in British Odonata between 1960 and 2004. The results show that there has been a significant, consistent advance in phenology in the taxon as a whole over the period of warming that is mediated by life history traits. British odonates significantly advanced the leading edge (first quartile date) of the flight period by a mean of 1.51 ±0.060 (SEM, n=17) days per decade or 3.08±1.16 (SEM, n=17) days per degree rise in temperature when phylogeny is controlled for. This study represents the first review of changes in odonate phenology in relation to climate change. The results suggest that the damped temperature oscillations experienced by aquatic organisms compared with terrestrial organisms are sufficient to evoke phenological responses similar to those of purely terrestrial taxa

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man

    Exploring the Universe with Metal-Poor Stars

    Full text link
    The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars (with metallicities down to [Fe/H]\sim-5.5) are relics from the high-redshift Universe, they probe the chemical and dynamical conditions of the Milky Way and the origin and evolution of the elements through nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. The Milky Way's dwarf satellites contain a large fraction (~30%) of the known most metal-poor stars that have chemical abundances that closely resemble those of equivalent halo stars. This suggests that chemical evolution may be universal, at least at early times, and that it is driven by massive, energetic SNe. Some of these surviving, ultra-faint systems may show the signature of just one such PopIII star; they may even be surviving first galaxies. Early analogs of the surviving dwarfs may thus have played an important role in the assembly of the old Galactic halo whose formation can now be studied with stellar chemistry. Following the cosmic evolution of small halos in simulations of structure formation enables tracing the cosmological origin of the most metal-poor stars in the halo and dwarf galaxies. Together with future observations and additional modeling, many of these issues, including the reionization history of the Milky Way, may be constrained this way. The chapter concludes with an outlook about upcoming observational challenges and ways forward is to use metal-poor stars to constrain theoretical studies.Comment: 34 pages, 11 figures. Book chapter to appear in "The First Galaxies - Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V. Bromm, B. Mobasher, T. Wiklin

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.

    A Visual Data Mining Tool that Facilitates Reconstruction of Transcription Regulatory Networks

    Get PDF
    Background: Although the use of microarray technology has seen exponential growth, analysis of microarray data remains a challenge to many investigators. One difficulty lies in the interpretation of a list of differentially expressed genes, or in how to plan new experiments given that knowledge. Clustering methods can be used to identify groups of genes with similar expression patterns, and genes with unknown function can be provisionally annotated based on the concept of ‘‘guilt by association’’, where function is tentatively inferred from the known functions of genes with similar expression patterns. These methods frequently suffer from two limitations: (1) visualization usually only gives access to group membership, rather than specific information about nearest neighbors, and (2) the resolution or quality of the relationships are not easily inferred. Methodology/Principal Findings: We have addressed these issues by improving the precision of similarity detection over that of a single experiment and by creating a tool to visualize tractable association networks: we (1) performed metaanalysis computation of correlation coefficients for all gene pairs in a heterogeneous data set collected from 2,145 publicly available micorarray samples in mouse, (2) filtered the resulting distribution of over 130 million correlation coefficients to build new, more tractable distributions from the strongest correlations, and (3) designed and implemented a new Web based tool (StarNet

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let

    Search for Higgs Boson Decaying to b-bbar and Produced in Association with W Bosons in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present a search for Higgs bosons decaying into b-bbar and produced in association with W bosons in p-pbar collisions at sqrt{s}=1.96 TeV. This search uses 320 pb-1 of the dataset accumulated by the upgraded Collider Detector at Fermilab. Events are selected that have a high-transverse momentum electron or muon, missing transverse energy, and two jets, one of which is consistent with a hadronization of a b quark. Both the number of events and the dijet mass distribution are consistent with standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching ratio for the Higgs boson or any new particle with similar decay kinematics. These upper limits range from 10 pb for mH=110 GeV/c2 to 3 pb for mH=150 GeV/c2.Comment: 7 pages, 3 figures; updated title to published versio
    corecore